
Carnegie Mellon
Software Engineering Institute

Reasoning Frameworks
Len Bass
James Ivers
Mark Klein
Paulo Merson

July 2005

1)IS TR 13U T 10 S TAT PFF N TA

Approved for Public ReleaseDistribution Unlimited

TECHNICAL REPORT
CMU/SEI-2005-TR-007
ESC-TR-2005-007

-- f r

__ CarnegieMellon
SSoftware Engineering Institute

Pittsburgh, PA 15213-3890

Reasoning Frameworks

CMU/SEI-2005-TR-007
ESC-TR-2005-007

Len Bass
James Ivers
Mark Klein
Paulo Merson

July 2005

Software Architecture Technology Initiative
Predictable Assembly from Certifiable Components
Initiative

Unlimited distribution subject to the copyright.

20051223 005

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external

and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the

copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract .. vii

1 Introduction .. 1

2 Elements of a Reasoning Framework .. 3
2.1 Problem Description .. 6

2.2 Analytic Theory .. 7

2.3 Analytic Constraints .. 8

2.4 Model Representation ... 10

2.5 Interpretation ... 12

2.6 Evaluation Procedure .. 14

2.7 Sum mary of Element Exam ples .. 15

3 Related Techniques ... 17
3.1 Trusting Reasoning Fram ework Results ... 17

3.1.1 Certification ... 17

3.1.2 Validation -........ ... 17
3.2 Using a Reasoning Framework .. 18

3.2.1 A Tactics-Based Approach ... 19

4 Com FoRT Description .. 21
4.1 Com FoRT Elem ents .. 21

4.1.1 Problem Description .. 21
4.1.2 Analytic Theory .. 22
4.1.3 Analytic Constraints ... 22

4.1.4 Model Representation ... 23
4.1.5 Interpretation ... 23

4.1.6 Evaluation Procedure ... 23

4.2 Com FoRT Im plem entation ... 24

5 Sum m ary ... 25

References 27

CMU/SEI-2005-TR-007

ii CMUISEI-2005-TR-007

List of Figures

Figure 1: A Reasoning Framework from a User's Perspective 4

Figure 2: Implementation of a Reasoning Framework 5

Figure 3: Analytic Constraints Define Analyzable Assemblies 9

Figure 4: Graphical Representation of a Model Used in a Performance
Reasoning Framework .. 11

Figure 5: Model Generation for a Performance Reasoning Framework by
Interpretation ... 13

Figure 6: Tactics for Performance ... 20

Figure 7: ComFoRT Implementation ... 24

CMU/SEI-2005-TR-007 iii

iv CMU/SEI-2005-TR-007

List of Tables

Table 1: Problem Descriptions of Three Reasoning Frameworks 7

Table 2: Analytic Theories of the Performance, Variability, and ComFoRT
Reasoning Frameworks .. 8

Table 3: Analytic Constraints of the Performance, Variability, and ComFoRT
Reasoning Frameworks .. 10

Table 4: Model Representations Used in the Performance, Variability, and
ComFoRT Reasoning Frameworks ... 12

Table 5: Interpretations of the Performance, Variability, and ComFoRT
Reasoning Frameworks .. 14

Table 6: Evaluation Procedures of the Performance, Variability, and ComFoRT
Reasoning Frameworks .. 15

Table 7: Summary of the Elements of the Performance, Variability, and
ComFoRT Reasoning Frameworks ... 15

CMU/SEI-2005-TR-007 v

vi CMU/SEI-2005-TR-007

Abstract

Determining whether a system will satisfy critical quality attribute requirements in areas such

as performance, modifiability, and reliability is a complicated task that often requires the use
of many complex theories and tools to arrive at reliable answers. This report describes a ve-
hicle for encapsulating the quality attribute knowledge needed to understand a system's qual-

ity behavior as a reasoning framework that can be used by nonexperts. A reasoning frame-
work includes the mechanisms needed to use sound analytic theories to analyze the behavior
of a system with respect to some quality attribute. This report defines the elements of a rea-

soning framework and illustrates the reasoning framework concept by describing several rea-
soning frameworks and how they realize these elements.

CMU/SEI-2005-TR-007 vii

viii CMU/SEI-2005-TR-007

1 Introduction

A system's software architecture has a significant impact on its ability to satisfy critical qual-
ity attribute requirements in areas such as performance, modifiability, and reliability. Deter-
mining whether an architecture will satisfy quality requirements is a complicated task, how-
ever, often requiring the use of many complex theories and tools to arrive at reliable answers.

This report describes a vehicle for encapsulating the quality attribute knowledge needed to
understand a system's quality behavior as a reasoning framework that can be used by nonex-
perts. A reasoning framework includes the mechanisms needed to use sound analytic theories
to analyze the behavior of a system with respect to some quality attribute. For example, a per-
formance reasoning framework could generate a task model corresponding to an architectural
description and then calculate latencies using Rate Monotonic Analysis (RMA). The reason-
ing ability given by the theories serves as a basis for (a) predicting behavior before the sys-
tem is built, (b) understanding behavior after it is built, and (c) making design decisions
while it is being built and when it evolves.

Each reasoning framework is based on specific analytic theories that are used to compute
specific measures of quality attribute related behavior. This explicit scoping of the applicabil-
ity of a reasoning framework leads to analytic power, often in the form of improved confi-
dence in analytic results or improved analytic tractability. However, this scoping does imply a
need to apply multiple reasoning frameworks to understand a system's behavior for multiple
quality attributes.

Having said this, however, reasoning frameworks were designed to be independent of the
development method or even time of application. Though our current work, and the remain-

der of this report, focuses on the application to architecture descriptions, reasoning frame-
works could be applied to a variety of development artifacts such as designs, source code, or
even binary images. Reasoning frameworks could be applied to software architectures to help
guide initial decisions or to source code as a means to justify reduced testing effort. Regard-
less, the essence-packaging the knowledge needed to analyze quality behaviors-is the
same.

In our work, we use reasoning frameworks as part of two different technologies: (1) ArchE

and (2) prediction-enabled component technologies (PECTs). ArchE is an architectural design
assistant that uses reasoning frameworks to analyze quality behavior and that adjusts designs

using architectural tactics to satisfy unmet architectural requirements [Bachmann 03]. PECTs
combine reasoning frameworks that predict system behaviors with a component technology
that constructively enforces applicability of the reasoning frameworks [Wallnau 03a].

CMU/SEI-2005-TR-007 1

Section 2 of this report defines the reasoning framework concept by describing the elements
that make up a reasoning framework and how they interact to help engineers reason about

quality attributes. Section 3 describes related techniques that can or should be used along
with reasoning frameworks. Section 4 describes a reasoning framework that we have devel-

oped and how it realizes the elements of our definition, to make the idea more concrete.

2 CMU/SEI-2005-TR-007

2 Elements of a Reasoning Framework

A reasoning framework provides the capability to reason about specific quality attribute be-

havior(s) of an architecture through the use of analytic theories. The class of behaviors or
problem situations for which the reasoning framework is useful is referred to as the problem

description. Each reasoning framework makes use of an analytic theory as the basis for its
reasoning. Analytic theories use formal model representations to abstractly describe those
aspects of a system about which they reason. The constraints imposed by the analytic theory
on the architecture, that is, the analytic constraints, ensure that the assumptions for using the

theory are met. The mapping from the architecture to the model is known as the interpreta-

tion, and the procedure used to solve the model is known as an evaluation procedure. In
summary, the six elements of a reasoning framework are

1. problem description: identifies the quality attribute for which the reasoning framework
is used, more specifically the set of quality measures that can be calculated or the set of
quality requirements (as constrained by quality measures) whose satisfaction it evaluates

2. analytic theory: the sound foundations on which analyses are based; typically an estab-

lished discipline such as queuing theory, rate monotonic scheduling theory, finite state
automata, or temporal logic

3. analytic constraints: constraints specifying the set of systems that satisfy assumptions
imposed by the analytic theory

4. model representation: a model of the aspects of a system relevant to the analytic theory

in a form suitable for use with the evaluation procedure

5. interpretation: a procedure that generates model representations from information found

in architectural descriptions

6. evaluation procedure: algorithms or formulae that calculate specific measures of a qual-
ity attribute from a model representation

These elements encapsulate the quality attribute knowledge needed to predict some aspect of
a system's behavior with respect to some quality attribute. The specific behavior predicted is
given by the quality attribute measures of interest in the reasoning framework's problem de-
scription. Because the six elements have a well-defined scope in terms of quality attributes, a
reasoning framework contains only what is necessary to reason about the specified quality

behaviors.

While all elements are essential to form a coherent reasoning framework, not all elements

have runtime manifestations (i.e., not all elements are found in a reasoning framework im-
plementation). Nor are all elements visible to all stakeholders. Reasoning framework devel-

CMU/SEI-2005-TR-007 3

opers can be expected to be quality attribute and analytic theory experts. However, reasoning
framework users can be nonexperts because of the way quality attribute knowledge is pack-
aged into reasoning frameworks. Users don't need to be experts in the analytic theory and

don't need to understand the model representation or how interpretation or evaluation proce-
dures work-they are interested in the final result. The implementation of a reasoning
framework, in fact, should be as automated as possible and should expose users to as few
concepts as possible. It is important to note, however, that while a reasoning framework does
not have to provide an implementation, it must be defined rigorously enough to be imple-
mentable.1 It particular, the evaluation procedure must be computable.

From an end user's point of view, the reasoning framework is a black box that takes an archi-
tecture description and desired quality attribute measures as input and produces quality at-
tribute measures as output (Figure 1). For the user, the breakdown of reasoning framework
elements and the underlying analytic theory are less important than how the framework is
used in practice.

f Implementation of a

Reasoning Framework

repesetiionimpemntaio

Figure 1: A Reasoning Framework from a User's Perspective

Figure 2 shows what the implementation of a reasoning framework might look like. The ar-
chitecture description provided by the user as input must satisfy the reasoning framework's

analytic constraints. The set of desired quality attribute measures is restricted to problems

from the reasoning framework's problem description. Inside, two transformations take place.

First, the architecture description is translated into a model representation via interpretation.
Second, the evaluation procedure reads the model representation (and sometimes the desired

Of course, only those elements with a runtime manifestation are implemented (or must be imple-
mentable). Such elements include the evaluation procedure and interpretation but not the analytic

theory.

4 CMU/SEI-2OO5-TR-O07

quality attribute measures) to predict the quality attribute measures that are the output of the
reasoning framework. The evaluation procedure implementation uses algorithms and formu-
lae based on the analytic theory.

, Analytic
constraints

sc Implementation of a
satisfies Reasoning Framework

ir t/based on

Problem Aayide p escription r

Key:uDatamReasoning

representation Transformation frameworkrersetti E" element

D Packageable
implementation --- ----- Dependency l Data flow

Figure 2: Implementation of a Reasoning Framework

In Sections 2.1 through 2.6, we describe the six elements of a reasoning framework in more
detail. Additionally, we briefly illustrate how each element is realized in the following three

reasoning frameworks that we use as running examples:

CMU/SEI-2005-TR-007 5

1. a performance reasoning framework [Hissam 02]

2. a variability reasoning framework2

3. a model checking reasoning framework (ComFoRT), which is further described in Sec-

tion 4 [Ivers 04]

In Section 2.7 we provide a table summarizing the six elements of our three reasoning

framework examples.

2.1 Problem Description
A reasoning framework is designed to solve specific quality attribute problems; its problem
description describes this set of problems, allowing users to choose reasoning frameworks

that fit their needs. The problem description identifies the quality attribute for which the rea-
soning framework is used, more specifically the set of quality measures that can be calculated
or the set of quality requirements (as constrained by quality measures) whose satisfaction it

evaluates. For example, while performance is a broad topic with many potential measures, a
particular performance reasoning framework might only calculate task latency or evaluate

whether tasks will meet their deadlines.

The problem description also describes the notation that must be used to express the desired
quality measures or quality requirements, as they relate to a user's architecture description.
Continuing the above example, the problem description might dictate that a user identify the
tasks for which latency should be calculated by annotating the appropriate elements of the
architecture description with a particular tag.

An effective system for describing the problems that can be solved by a reasoning framework
is the general scenario approach [Bass 03]. A general scenario is a system-independent de-
scription of a quality attribute requirement that can be used for any quality attribute. A gen-
eral scenario has six parts:

1. stimulus: a condition that needs to be considered when it arrives at a system. Examples
are an event arriving at an executing system and a change request arriving at a devel-
oper.

2. source of the stimulus: the entity (e.g., a human or computer system) that generated the

stimulus. For example, a request arriving from a trusted user of the system will in some
circumstances be treated differently than a request arriving from an untrusted user.

3. environment: the conditions under which the stimulus occurs. For example, an event that

arrives when the system is in an overload condition may be treated differently than an

event that arrives when the system is operating normally.

4. artifact: the artifact affected by the stimulus. Examples include the system, the network,

and a subsystem.

Bachmann, F. Variability Reasoning Framework for Product Line Architectures (CMU/SEI-2005-

TR-012, to be published in 2005).

6 CMU/SEI-2005-TR-007

5. response: the activity undertaken by the artifact after the arrival of the stimulus. Exam-

ples include processing the event for event arrival or making the change without affect-
ing other functionality for a change request.

6. response measure: the attribute-specific constraint that must be satisfied by the response.

A constraint could be, for example, that the event must be processed within 100 ins, or
that the change must be made within two person-days. Response measures can also be
Boolean, such as "The user has the ability to cancel a particular command" (yes or no).

Software Architecture in Practice [Bass 03] provides a set of general-scenario-generation ta-
bles for the attributes of availability, modifiability, performance, security, testability, and us-

ability. These tables can be used to elicit the specific quality attribute requirements for their
particular attributes. A reasoning framework's problem description can consist of the set of
general scenarios for which it can calculate the response measure.

Concrete scenarios are instantiations of general scenarios for the particular system under con-
sideration. These can likewise be used to specify the quality requirements (or desired meas-
ures) for that system. The set of concrete scenarios supplied by a user indicates the specific
problems the user wants to use the reasoning framework to analyze and solve.

The following is a sample concrete scenario: A remote user initiates a set of transactions to

the system aperiodically no more often than one per second under normal operations. The
transactions are to be processed with an average latency of two seconds.

Table 1 summarizes the problem descriptions of the three reasoning frameworks introduced

in Section 2.

Table 1: Problem Descriptions of Three Reasoning Frameworks

Reasoning Framework Problem Description

Performance prediction of average latency

Variability prediction of the cost of creating a new variant

ComFoRT prediction of satisfaction of behavioral assertions expressed in
state/event linear temporal logic (SE-LTL)

2.2 Analytic Theory
Each reasoning framework is based on one or more analytic theories. An analytic theory3 is

some body of knowledge that has proven to be useful in reasoning about some quality attrib-
ute. Analytic theories are drawn from established computer science disciplines and include

topics such as RMA, automata theory, queuing theory, and Markov analysis. An analytic the-
ory defines its assumptions, the elements and their properties describable in the theory, rules

3 In other reports, this element has been referred to as quality attribute theory or property theory.

CMU/SEI-2005-TR-007 7

governing the relationships among elements, and a logic for drawing conclusions from a spe-

cific model in the theory.

For example" RMA theory is used to reason about worst-case latency. It assumes that fixed

priority scheduling is being used and that arrival rates and execution times have little or no
variability. RMA models are expressed in terms of sets of tasks, their overall topology and

priorities, execution times, and the frequency with which external messages arrive. RMA the-
ory includes formulae for computing worst-case latency and ensuring deadline satisfaction.

The use of an analytic theory to reason about a quality attribute is the underlying principle for
a reasoning framework. The model representation is relative to the theory; the evaluation

procedure is an application of the theory's logic to calculate specific quality attribute meas-

ures.

Note that inclusion of an analytic theory is more symbolic than literal. Reasoning framework

documentation should identify and provide a short summary of the theory used, along with
citations for more information, not reproduce the entirety of research in the area. Likewise, an

implementation of a reasoning framework is likely to implement only as much of the theory

as is used in the evaluation procedure, rather than all aspects of the theory.

Table 2 summarizes the analytic theories of the three reasoning frameworks introduced in
Section 2.

Table 2: Analytic Theories of the Performance, Variability, and ComFoRT

Reasoning Frameworks

Reasoning Framework Analytic Theory

Performance 0 queuing theory
& scheduling theory

Variability 0 impact analysis
* cost estimation for instantiation mechanisms

ComFoRT 0 finite state automata
* temporal logic
* model checking

2.3 Analytic Constraints

A reasoning framework is not intended to analyze any arbitrary design. By restricting the de-
sign space to which the reasoning framework is applied, more assumptions can be made in

the analytic theory and evaluation procedure. These assumptions are often necessary to im-

prove confidence in analytic results, permit the analytic tractability that allows the reasoning

framework to be applied to larger systems, or even ensure solvability.

8 CMU/SEI-2005-TR-007

Analytic constraints are generated during the development of a reasoning framework as

needed to achieve the desired analytic capability for a target class of systems. The Carnegie

Mellon® Software Engineering Institute (SEI) has developed the co-refinement process as a

means to manage the tradeoffs between the analytic constraints that limit the set of systems
that can be analyzed and the generality of assemblies that can be created in the target plat-

form [Hissam 02]. Briefly, the co-refinement process starts with as many analytic constraints

as are necessary to thoroughly understand how to apply the analytic theory to a class of sys-
tems, even if the class is smaller than the class of interest. The process proceeds by incremen-

tally relaxing analytic constraints and/or improving the analytic theory or evaluation proce-

dure until the analytic constraints are sufficiently relaxed to allow the reasoning framework to
be applied to an "interesting" class of systems of interest.

Each reasoning framework specifies the analytic constraints that must be met by the input

architecture description. Only designs that meet the constraints are analyzable, as depicted

conceptually in Figure 3. A simple example of an analytic constraint for a performance rea-

soning framework is "all event arrivals must be periodic."

In the zone: Well-formed
analyzable assembly:

satisfies analytic
constraints

O Out of the zone:
not analyzable

Figure 3: Analytic Constraints Define Analyzable Assemblies4

Additionally, a reasoning framework may also impose that some elements of the input design

be associated with specific information needed to perform the analysis. For example, a per-

formance reasoning framework can only be applied to architecture descriptions in which each

component has an associated execution time. In some cases, this information may be ob-

tained directly from architecture description-usually through annotations-but it can also be

® Camegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Uni-
versity.

4 Analytically predictable systems lie within the set, or zone, of predictable assemblies. Assemblies
that lie outside the zone are not analytically predictable.

CMU/SEI-2005-TR-007 9

derived from the response measure of quality attribute requirements that are used as inputs to
the reasoning framework or even from the output of another reasoning framework.

Although we can express analytic constraints informally in prose, in the implementation of
the reasoning framework they should be formally specified to enable automatic enforcement
and verification.

Table 3 summarizes the analytic constraints of the three reasoning frameworks introduced in

Section 2.

Table 3: Analytic Constraints of the Performance, Variability, and ComFoRT
Reasoning Frameworks

Reasoning Framework Analytic Constraints

Performance 0 constrained interarrival rates for aperiodic streams
* sporadic server aperiodic handler
0 components do not perform 1/0 operations and do not sus-

pend themselves
0 components have fixed execution time

Variability 0 applicable only to a specified set of product line instantia-
tion mechanisms

* cost of changing a component is a constant value and does
not vary across any dimension

ComFoRT 9 no shared data
* static topologies
* no pointer aliasing

2.4 Model Representation
The analytic theories used in reasoning frameworks are typically used in a broader context

than just software architectures. As such, they have their own form of models, 5 which are ab-
stractions of the system capturing only the information relevant to the analysis being per-
formed. These models are represented within a reasoning framework using some encoding
for elements and relations between elements, as well as properties. The encoding is suitable
for machine processing.

The nature of the elements, relations, and properties is specific to each reasoning framework,
as each uses a different view of the system. For example, a performance reasoning frame-
work may deal with tasks that have execution time and deadlines as properties, while a reli-

5 These models have been referred to as "quality attribute models" in other work. While these mod-
els are used to reason about quality attributes, they often are not specific to a quality attribute. For
example, finite state automata can be used to reason about safety or reliability qualities.

10 CMU/SEI-2005-TR-007

ability reasoning framework may deal with processes that have mean time between failures

(MTBF) as a property and dependencies among processes as relations.

Figure 4 shows a visualization of the model of some system in a performance reasoning

framework. This example is based on RMA applied to a single processor on which multiple
processes reside, each of which performs computations on its own input data stream. The

various processes compete for the processor, with only one process being allocated the proc-
essor at a time. The quality attribute measure that can be calculated is latency-the time to

completely process each message.

Models in the reasoning framework contain all the information that is required by the reason-
ing framework's evaluation procedure to calculate quality attribute measures. Because rea-

soning framework users are not expected to be experts in the underlying analytic theory or an
accompanying notation, models are not supplied by users. Instead, models are generated
automatically from architecture descriptions using the reasoning framework's interpretation.

Though the primary purpose of a model representation is as an input to an automated evalua-
tion procedure, a reasoning framework might also generate a visualization of the model that
is more suitable for human consumption, such as that shown in Figure 4.

Task 1 Name:C3.sl N CName:.,. (Nae:C2Is1 Name:C5.sl
Name: Ctockl,r priority: 9 priority: 8 priority: 7 priority: 5 priority: 4
Period: 60 exec'ime: 5 execlime: 5 execTime: 5 execTime: 5 execTime: 5
Offset: 0

Task 2 Name: C5,s1
Name: Clock2,r priority: 1 priority: 4
Period: 90 1execTime:5iexecTime:5)
Offset: 30

Task 3
Name, ApCIockl.r Name: SSI.msgln
rep.period 100
budget: 10 priority: 120
distribution: Exponential execTime: 10
intervalMean, 200

Key:-, Task Subtask Subtask
K: Tprecedence

Figure 4: Graphical Representation of a Model Used in a Performance Reasoning
Framework

Table 4 summarizes the model representations used in the three reasoning frameworks intro-

duced in Section 2.

CMU/SEI-2005-TR-007 11

Table 4: Model Representations Used in the Performance, Variability, and
ComFoRT Reasoning Frameworks

Reasoning Framework Model Representation

Performance queues, tasks, subtasks, and their relations

Variability directed graph of dependencies annotated with costs and prob-
abilities

ComFoRT concurrent finite state machines represented in C and finite
state processes (FSP)

2.5 Interpretation
Interpretation is the process used to generate a model representation suitable for consumption
by a reasoning framework's evaluation procedure from an architecture description input to
the reasoning framework. In an implemented reasoning framework, an interpretation is de-

fined from the reasoning framework's input syntax (e.g., some architecture description lan-

guage) to the input syntax of the implementation of the evaluation procedure.

Because the resulting model, not the architecture description, is the input to the evaluation
procedure, it must contain all information that the evaluation procedure needs to calculate
quality attribute measures. Consequently, the interpretation must be able to derive or extract
this information from the supplied architecture description and any ancillary sources, such as
concrete scenarios. One use of the reasoning framework's analytic constraints is to specify
the information that must be provided for the reasoning framework to apply.

Using the previous example of a performance reasoning framework, the architectural descrip-
tion must include an identification of the schedulable entities, the execution times that con-
tribute to each of them, and the period of each. The execution time of a process, for example,
may be divided among various computations included within the process, and the interpreta-
tion must determine which computations are included in each process and the execution time
of each computation.

The upper portion of Figure 5 shows an example of an architecture description expressed in

CCL [Wallnau 03b] that is used as the input to a performance reasoning framework (Ass), and
the lower portion shows the resulting performance model.

In this case, much of the architecture's structure (component boundaries, interfaces, and the
like) has disappeared in the generation of a model of the underlying task structure. Despite
the difference in appearance, the behaviors found in the reasoning framework model corre-
spond to those found in the architecture, but with those aspects of the architecture that are not
relevant to the analysis stripped away. Transformations of this degree are not unusual, but

must be performed in a manner that ensures that the conclusions drawn from the model also
apply to the architecture. The validation element of a reasoning framework helps ensure this
correspondence. Validation is discussed in Section 3.1.2.

12 CMU/SEI-2005-TR-007

A~pelod 60s> ~ exc~ie, 5s> ~ excT~e, ms> asmi: EnvX

A-SSofty I8tepeavtionf,5

T!sk 1 Nae C3 ' i Nm ls aeC.l ae 2s ae 5

Name:C Cl4k .rrody pr4iy> nrt pot roiy

PeAd:~ execTime, 5m$> ~ m xc~m:S ee~me xcie

Period: ty 9> Aexeceie5)Iexc 5me

Kedoi y : Tas S 1bAskpeeec

InSSerpretationio

Peiod:2.

Off/set-0 0-R 071

Table 5: Interpretations of the Performance, Variability, and ComFoRT Reasoning

Frameworks

Reasoning Framework Interpretation

Performance from CCL6 to queues, tasks, subtasks, and their relations

Variability from an ArchE representation of
"* feature tree
"* mapping of feature tree to components
"• cost of change

* - probability of propagation between components
to directed graph of dependencies annotated with costs and

probabilities

ComFoRT from CCL to concurrent finite state machines represented in C

and FSP

2.6 Evaluation Procedure
An evaluation procedure7 is the computable algorithm by which a reasoning framework cal-
culates quality attribute measures from a model representation. An evaluation procedure may
be implemented directly or indirectly, such as by the use of simulation models or spread-
sheets.

A useful analogy is to think of the evaluation procedure as a deterministic procedure for cal-
culating dependent parameters from independent ones. The dependent parameters are the

quality attribute measures calculated using the reasoning framework. The independent pa-
rameters are those characteristics of the architecture that appear in the model representation;
they are the knobs an architect can turn to affect how the system will behave with respect to
the calculated quality attribute measures.

The following example is derived from RMA to show one form of evaluation procedure. In
this example, RMA is applied to a single processor on which multiple processes reside, each
of which performs computations on its own input data stream. The various processes compete
for the processor, with only one process being allocated the processor at a time. The latency,
the dependent parameter, is the time to completely process each message.

i-1

6 In a future version of ComFoRT and the performance reasoning framework, additional languages

(such as UML 2.0) will be supported.
' In other reports, this element has been referred to as a decision procedure, evaluation function, or

model solver.

14 CMU/SEI-2005-TR-007

Three types of time are "experienced" by an arbitrary process under these circumstances: (1)
preemption, (2) execution, and (3) blocking time. Preemption time is the contribution to la-

tency attributable to higher priority processes. Blocking is the contribution to latency due to
low-priority processes. Blocking time arises as a consequence of the shared resource topol-

ogy.

In the model representation, Ci denotes the execution time of process i, Ti denotes the period

of process i, and Bi denotes the blocking time incurred by process i. The evaluation procedure

for calculating the worst-case latency for process i, assuming that processes 1 through i-1 are
of higher priority, is an algorithm for iteratively solving the following formula until it con-

verges (that is, the value of L, remains the same for two consecutive iterations).

Table 6 summarizes the evaluation procedures of the three reasoning frameworks introduced

in Section 2.

Table 6: Evaluation Procedures of the Performance, Variability, and ComFoRT

Reasoning Frameworks

Reasoning Framework Evaluation Procedure

Performance 0 solving queuing formulae
0 simulation

Variability solving cost equations

ComFoRT model checking algorithms for verification combined with
various state space reduction techniques

2.7 Summary of Element Examples
Table 7 summarizes how the six elements of a reasoning framework are realized in the per-

formance, variability, and ComFoRT reasoning frameworks.

Table 7: Summary of the Elements of the Performance, Variability, and ComFoRT

Reasoning Frameworks

Performance Variability ComFoRT

Problem prediction of average prediction of the cost of prediction of satisfac-

Description latency creating a new variant tion of behavioral as-
sertions expressed in
SE-LTL

Analytic 0 queuing theory 0 impact analysis 0 finite state

Theory 0 scheduling theory * cost estimation for automata
instantiation 0 temporal logic

mechanisms 0 model checking

CMU/SEI-2005-TR-007 15

Table 7: Summary of the Elements of the Performance, Variability, and ComFoRT

Reasoning Frameworks (continued)

Performance Variability ComFoRT

Analytic 0 constrained interar- 0 confined to a set of 9 no shared data

Constraints rival rates for aperi- supported instantia- * static topologies
odic streams tion mechanisms 0 no pointer aliasing

"* sporadic server 0 constant cost of
aperiodic handler change for compo-

"* components do not nents

perform 1/0 opera-
tions and do not
suspend themselves

"* components have

fixed execution time

Model queues, tasks, subtasks, directed graph of de- concurrent finite state

Representation and their relations pendencies annotated machines represented
with costs and prob- in C and FSP

abilities

Interpretation from CCL to queues, from an ArchE repre- from CCL to concur-

tasks, subtasks, and their sentation of rent finite state ma-
relations • feature tree chines represented in C

* mapping of feature and FSP
tree to components

* cost of change
* probability of

propagation be-

tween components

to directed graph of

dependencies annotated
with costs and prob-
abilities

Evaluation * solving queuing solving cost equations model checking algo-

Procedure formulae rithms for verification

* simulation combined with various
state space reduction

techniques

16 CMU/SEI-2005-TR-007

3 Related Techniques

A reasoning framework encapsulates only the quality attribute knowledge needed to analyze

some aspect of a system's behavior with respect to that quality attribute. It is method neu-

tral-that is, it does not prescribe where inputs come from and what should be done with its
outputs. This section illustrates a few techniques that can be used with reasoning frameworks,
but by no means describes all possible reasoning framework uses.

3.1 Trusting Reasoning Framework Results
The most likely use of a reasoning framework is to guide development decisions, such as
evaluating whether requirements are satisfiable, comparing design alternatives, and justifying
reduced testing. To have any confidence that appropriate decisions are being made, however,
engineers must know how much they can trust a reasoning framework's results. This depends
on two factors: (1) the accuracy of the inputs to the reasoning framework and (2) the suitabil-
ity and correctness of the reasoning framework's elements.

3.1.1 Certification

The degree to which the accuracy of the inputs to a reasoning framework can be established
depends on how the reasoning framework is being used. When used as part of a design proc-
ess, many inputs may be speculative or encompass a relatively large range of possible values.
However, when some software elements are already implemented, inputs can potentially be
very accurate. In such cases, a certification procedure can be used to place some objective
measure of confidence on reasoning framework inputs.

Various technologies could be used for certification, depending on the type of information
used as input to a reasoning framework. For example, if a performance reasoning framework
requires the execution time of components as an input, this information can be gathered
through observation over a selected sample of component executions. For a reasoning

framework requiring detailed behavioral descriptions, a control flow graph extracted from
source code can be compared to the behavioral model. In either case, some objective measure
can be placed on the reasoning framework's inputs, which can be used to bound the confi-
dence users should place in the reasoning framework's results.

3.1.2 Validation

In contrast, validation of a reasoning framework's outputs is less dependent on when a rea-

soning framework is applied. One important factor is the soundness of the reasoning frame-

CMU/SEI-2005-TR-007 17

work's elements, which can and should be established during the creation of the reasoning
framework. Additionally, reasoning framework results must be compared with the actual be-
havior of representative implemented systems to determine the level of confidence in the rea-
soning framework's results for a class of systems.

The major point of a reasoning framework is to establish a formal relationship between archi-
tectural designs and analytic theories so that the "reasoning power" of the theories can be
used as the basis for (a) predicting behavior before the system is built, (b) understanding the
behavior after it is built, and (c) making design decisions while it is being built and when it
evolves. This formal correspondence between the architecture and its representation as a
model in an analytic theory is achieved via interpretation. Therefore, one aspect of validation
must be to ensure the correctness of the interpretation. Another aspect of validation is to en-
sure the correctness of the evaluation procedure.

Human inspection of the inference rules upon which the interpretation is based and proofs
upon which the evaluation procedure is based is one Way of validating the soundness of a

theory. Simulation of the architecture to determine whether the analytic-based predictions are
consistent with simulation results is another common technique.

Beyond the soundness of interpretation and evaluation, one must be concerned with the accu-
racy of predictions compared to how a fully fleshed out system executes on an actual plat-
form. A reasoning framework that is platform independent, the norm in our work, will not
contain any specific information about the accuracy of the analytic theories in the context of a
specific platform. However, it should offer a procedure for validating the reasoning frame-
work. One such procedure entails choosing a set of representative systems, executing those
systems on a specific platform, and then comparing the actual results to the predicted results.
These data provide the basis for generating statistically based levels of confidence in the pre-
dictions. The success of the validation procedure will depend on the care with which a sam-
ple set of systems is chosen.

3.2 Using a Reasoning Framework
There are two approaches to understanding and controlling quality attributes through the use

of methods. One approach is to embed quality attribute knowledge into the method, and the
other is to make the method, per se, independent of any particular quality attribute knowledge
and to modularize the quality attribute knowledge so that any combination of quality attrib-
utes can be used with the method. An example of the first approach is the Rational Unified

Process (RUP) [Kruchten 04], in which one step in architectural design is to decompose the
system being designed into layers. Layers are a construct used to support portability and
modifiability, and having an explicit step in the method that requires layers embeds portabil-
ity and modifiability knowledge into the method.

Reasoning frameworks are an example of the second approach. Quality attribute knowledge
is encapsulated into a reasoning framework, and all reasoning frameworks provide the same

18 CMU/SEI-2005-TR-007

capability to the methods that rely on them. In our case, a reasoning framework contains the
ingredients necessary to create predictive analytic models for understanding a specific quality
attribute. The reasoning framework thus provides the capability to predict quality attribute
behavior prior to implementing a system, which in turn allows the designer to try various de-
sign options before incurring implementation and refactoring expenses. This capability also

allows a designer deeper insight into the ramifications of various design decisions. Since
quality attributes have a significant impact on a system's architecture, the modeling capability
provided by reasoning frameworks is a very important design aid.

Section 3.2.1 describes a way to use reasoning frameworks as part of an approach for rec-
ommending architectural changes to help meet quality attribute requirements. This approach
is independent of any specific reasoning framework.

3.2.1 A Tactics-Based Approach

While the evaluation procedure of a reasoning framework gives a user calculated quality

measures for his or her system, that is not enough to ensure that systems will meet their qual-
ity attribute requirements. Architects still have to decide what to do when calculated meas-
ures do not satisfy requirements.

The independent/dependent analogy for evaluation procedures provides insight into this deci-
sion process. Revisiting the performance example from Section 2.6, we see that there are ex-

actly three independent parameters: (1) the period of a process, (2) the execution time of a
process, and (3) the priority of a process. If a particular process does not meet its latency re-
quirement, within the model there are only three things that can be manipulated to reduce the
latency-these three parameters. Furthermore, given a fixed set of scheduling priorities, we
know that reducing the execution time of a process or increasing the period of a process (not
necessarily the process whose latency requirement is unmet) are the only options for reducing
the latency of the process whose requirement is unmet.

Given a modification of an independent parameter (say reducing the execution time of a
process), multiple architectural techniques can be used to effect this reduction. Any of the
computations involved in the process, including algorithmic computation or overhead com-
putations, can be reduced. Similarly, multiple architectural techniques have the effect of in-
creasing the period of a process.

The possibility of changing independent parameters to affect the behavior of a system is the
motivation for architectural tactics. An architectural tactic is a design decision that influences
the control of a quality attribute response [Bass 03]. A tactic is used to transform a software
architecture, where the result of the transformation changes a quality attribute measure to be
closer to a desired value. An architectural tactic can change an architecture's structure (e.g.,

generalize modules) or one of its properties (e.g., reduce computational overhead), add new
responsibilities that the architecture must support (e.g., introduce an intermediary), or add a

CMU/SEI-2005-TR-007 19

new quality attribute requirement (e.g., introduction of a usability tactic will cause a perform-
ance requirement for feedback).

We have developed lists of architectural tactics for the attributes of availability, modifiability,

performance, security, testability, and usability-partially through an examination of existing
models and partially through interviewing experts in the various quality attributes. The pa-
rameters for the existing RMA reasoning framework are manipulated by some of the per-

formance architectural tactics. We expect that as additional reasoning frameworks are devel-

oped for any of the attributes, the lists of architectural tactics will be refined and improved.
The existing tactics for performance given in Software Architecture in Practice [Bass 03] are

reproduced in Figure 6.

Performance

Performance Resource Resource Response

SDemand Management Arbitration generated
Evetswithin timearrive constraints

01 *Increase AIntroduce -Scheduling
Computational Concurrency: Policy
Efficiency - Maintain Multiple -Synchronization

-Reduce Copies .' ' Policy
Computational apoc Increase
~Overhead7 Available

o Manage Event Rate 5Resources~
*Control Frequency,

V of Sampling 4AV'-S<i-

Figure 6: Tactics for Performance

A tactis-based design manipulation approach matches a collection of tactics with rules for
comparing calculated quality attribute measures to requirements and rules for selecting ap-
propriate tactics to improve an architecture when requirements are not satisfied.

20 CMU/SEI-2005-TR-007

4 ComFoRT Description

ComFoRT is a reasoning framework used to determine whether systems satisfy behavioral
assertions that can be used to characterize safety, reliability, or security requirements [Ivers

04]. These behavioral assertions, called claims, express properties in terms of patterns of
events (communications) and state assignments (e.g., values of particular variables or modes

of operation) and their relative ordering over time. Examples of claims include

* Industrial robots never enter a work area when sensors indicate a person is in the work

area.

* Order acknowledgements are never lost or sent to the wrong receiver.

* Processes never write to the network after reading a file.

ComFoRT is based on model checking technology-a collection of algorithms used success-
fully, particularly in the hardware domain, to check whether a model of a system satisfies

behavioral claims in all possible executions. The exhaustive nature of model checking pro-
vides higher confidence than is typically feasible to achieve using conventional testing tech-

niques.

The ComFoRT reasoning framework has been developed by the SEI's Predictable Assembly

from Certifiable Components (PACC) Initiative for inclusion in prediction-enabled compo-
nent technologies (PECTs) [Wallnau 03a]. A PECT combines a component technology with
one or more reasoning frameworks to provide a more predictable way to engineer systems
from components. The component technology is used (among other things) to enforce the

Sreasoning frameworks' analytic constraints, ensuring that any system that can be built using
the PECT will have predictable behavior under its reasoning frameworks; that is, all systems

built using the PECT will be predictable by construction with respect to a set of particular
quality attributes or behavioral properties.

4.1 ComFoRT Elements

This section describes how the ComFoRT reasoning framework realizes the reasoning
framework elements defined in Section 2.

4.1.1 Problem Description

Unlike other reasoning frameworks we are developing, ComFoRT is not tied to one specific
quality attribute. It provides a general capability to verify behavioral assertions (claims) that
can be used to reason about a variety of quality attributes, such as safety, reliability, and secu-

CMU/SEI-2005-TR-007 21

rity. ComFoRT verifies whether the possible execution traces of a system satisfy claims ex-

pressed in SE-LTL [Chaki 04], which allows users to construct assertions from predicates
over state values and events representing communication among components (for example,

whenever component C receives an E event, x must be greater than 10). Therefore, ComFoRT
solves problems that can be defined in terms of whether all system executions satisfy the
types of claims expressible in SE-LTL, and the quality attribute measures are the truth or fal-

sification (with evidence) of these claims.

4.1.2 Analytic Theory

ComFoRT is based on temporal logic model checking theory, which is in turn based on work

in automata theory and temporal logics. Temporal logic model checking theory encompasses
a number of techniques for efficiently determining whether a finite state automata satisfies
claims written in a temporal logic under all possible executions. Whenever a model does not

satisfy a claim, a counterexample is provided. A counterexample is a trace showing a specific

sequence of steps undertaken by the processes in the model that lead to a state in which the

claim is false.

The model checking theory used in ComFoRT deals only with the relative ordering of states
and events among concurrent units, not with the passage of time.8 During verification, every
possible interleaving of concurrent units is considered when determining whether a claim is
satisfied. Several different model checking techniques (such as abstraction, compositional
reasoning, and symbolic representation) may be used to combat state space growth, allowing
more complex models to be verified without creating resource problems, principally exhaust-
ing available memory and consuming excessive processing time.

4.1.3 Analytic Constraints

ComFoRT is designed for use with embedded, reactive systems. In addition to restricting ap-
plicability to components exhibiting reactive behavior, it imposes a number of analytic con-
straints that simplify verification, such as

"* Concurrent units may not access shared data.

"• Topologies must be static, including allocation of concurrent units.

"* Component behavior may not be recursive, nor may cycles of unthreaded interactions

exist in the system.

"* The behavioral descriptions may not use pointer aliasing.

Note that there are other forms of model checking, such as hybrid automata, that deal more explic-

itly with time, but at the cost of decreased tractability.

22 CMU/SEI-2005-TR-007

4.1.4 Model Representation

ComFoRT's model checking engine processes models represented using a combination of C
and FSP files [Magee 01]. These languages are used together to provide a relatively concise
model from which much larger finite state automata, expressed in more elementary primi-
tives, are built. The C portion of these models captures the majority of the component behav-
ior, including variables, computation, sequencing of actions, and links to the FSP portion of
the model. The FSP portion of the model is used to describe the event-based communication
among concurrent units.

4.1.5 Interpretation

ComFoRT includes an interpretation that generates model representations from architecture
descriptions. Architecture descriptions that are used as inputs to ComFoRT are written in

CCL (in the future, other languages will be available as alternatives to CCL). The generated
model representations are written in a combination of C and FSP.

The interpretation extracts behavioral information needed to construct the automata repre-
sented in C and FSP from reaction descriptions, which in CCL are represented using a subset
of UML statecharts. It extracts concurrency information from CCL keywords indicating
where threads are present in the system and uses this information to allocate behavior de-
scriptions to a collection of automata composed in parallel to reflect the concurrency the sys-
tem will exhibit at runtime.

The interpretation ignores all information in the input CCL specification that is not related to
constructing these automata, such as annotations of execution time or thread priority.

4.1.6 Evaluation Procedure

ComFoRT's evaluation procedure is a model checking engine that implements a collection of
model checking algorithms, including state space reduction techniques such as automated
forms of predicate abstraction and assume/guarantee reasoning. The algorithms are particu-
larly appropriate for the class of systems we target.

A critical part of ComFoRT's evaluation procedure is its use of automated predicate abstrac-
tion to minimize state space growth. With the assistance of theorem provers, it computes con-
servative abstractions of the concrete model (the model representation). The nature of the

conservative abstractions ensures that if an abstraction, which can be verified much more ef-
ficiently, satisfies a claim, then the concrete model must also satisfy it.

This approach is combined with a counterexample-guided abstraction refinement (CEGAR)
approach to control the generation of abstract models. Should verification find that an error is
spurious (a result of the abstraction, not necessarily an error of the concrete model), the coun-
terexample indicating the error is used to refine the abstraction, and verification is performed

CMU/SEI-2005-TR-007 23

over the new abstract model. The result is an approach that begins with a small abstraction
that is incrementally enlarged as needed until the claim is verified or refuted.

4.2 ComFoRT Implementation
Figure 7 shows how the elements of ComFoRT are realized in an implementation. The tool
implementing interpretation generates C and FSP files (the model representation) based on a
CCL specification (the architecture description). This tool also implements checks to stati-
cally determine whether a given CCL specification satisfies all analytic constraints. The
model checker, Copper, implements the evaluation procedure, determining whether a particu-
lar claim (desired quality attribute measure) holds for the provided model representation.

No shared-data,
4 static topologies,

no pointer aliasing

ComFoRT Implementation

C & FS fles

'SE-,•aalT TRUE orcontri:

restricted by /
/based on

SE-LTL Model checking,
" sytxfinite state automata,

"V ;temporal logic

Key: Data ReasoningD represent-ation Transformation -framework~~0 re et element

0 Packageable ta o

implementation - - - - -- > Dependency Dat fow

Figure 7: ComFoRT Implementation

24 CMU/SEI-2005-TR-007

5 Summary

Determining whether a system will satisfy critical quality attribute requirements in areas such

as performance, modifiability, and reliability is a complicated task that often requires the use
of many complex theories and tools to arrive at reliable answers. This report described a ve-
hicle for encapsulating the quality attribute knowledge needed to understand a system's qual-
ity behavior as a reasoning framework that can be used by nonexperts. A reasoning frame-
work establishes a formal relationship between architectural designs and analytic theories so
that the "reasoning power" of the theories can be used as the basis for (a) predicting behavior
before the system is built, (b) understanding the behavior after it is built, and (c) making de-

sign decisions while it is being built and when it evolves. This report defined the elements of
a reasoning framework and illustrated the concept by describing several specific reasoning
frameworks and how they realize these elements.

CMU/SEI-2005-TR-007 25

26 CMU/SEI-2005-TR-007

References

URLs are valid as of the publication date of this document.

[Bachmann 03] Bachmann, F; Bass, L.; & Klein, M. Preliminary Design of ArchE:

A Software Architecture Design Assistant (CMU/SEI-2003-TR-021,
ADA421618). Pittsburgh, PA: Software Engineering Institute, Car-

negie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tr021.html.

[Bass 03] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

[Chaki 04] Chaki, S.; Clarke, E.; Ouaknine, J.; Sharygina, N.; & Sinha, N.
"State/Event-Based Software Model Checking," 128-147.
Integrated Formal Methods 4th International Conference (IFM

2004) (in Lecture Notes in Computer Science [LNCS], Volume
2999). Canterbury, Kent, UK, April 4-7, 2004. Berlin, Germany:
Springer-Verlag, 2004.

[Hissam 02] Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larsson, M.; Moreno,

G; Northrop, L.; Plakosh, D.; Stafford, J.; Wallnau, K.; & Wood, W.
Predictable Assembly of Substation Automation Systems: An
Experiment Report, Second Edition (CMU/SEI-2002-TR-03 1,
ADA418441). Pittsburgh, PA: Software Engineering Institute, Car-

negie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports

/02tr03 1.html.

[Ivers 04] Ivers, J. & Sharygina, N. Overview of ComFoRT. A Model Check-

ing Reasoning Framework (CMU/SEI-2004-TN-018). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2004. http://www.sei.cmu.edu/publications/documents/04.reports

/04tn018.html.

[Kruchten 04] Kruchten, P. The Rational Unified Process: An Introduction, Third

Edition. Boston, MA: Addison-Wesley, 2004.

CMU/SEI-2005-TR-007 27

[Magee 01] Magee, J. & Kramer, J. Concurrency: State Models & Java Pro-

grams. West Sussex, England: Wiley Publications, 2001.

[Wallnau 03a] Wallnau, K. Volume III: A Technology for Predictable Assembly

from Certifiable Components (CMU/SEI-2003-TR-009,
ADA413574). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports
/03tr009.html.

[Wallnau 03b] Wallnau, K. & Ivers, J. Snapshot of CCL: A Language for Predict-

able Assembly (CMU/SEI-2003-TN-025, ADA418453). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2003. http://www.sei.cmu.edu/publications/documents/03.reports

/03tn025.html.

28 CMU/SEI-2005-TR-007

REPORT DOCUMENTATION PAGE FOMBor Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

(Leave Blank) July 2005 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Reasoning Frameworks F1 9628-00-C-0003
6. AUTHOR(S)

Len Bass, James Ivers, Mark Klein, Paulo Merson
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Software Engineering Institute REPORT NUMBER

Carnegie Mellon University CMU/SEI-2005-TR-007
Pittsburgh, PA 15213

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

HO ESCIXPK REPORT NUMBER

5 Eglin Street ESC-TR-2005-007
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILrTY STATEMENT 12B DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS 41

13. ABSTRACT (MAXIMUM 200 WORDS)

Determining whether a system will satisfy critical quality attribute requirements in areas such as performance,
modifiability, and reliability is a complicated task that often requires the use of many complex theories and
tools to arrive at reliable answers. This report describes a vehicle for encapsulating the quality attribute
knowledge needed to understand a system's quality behavior as a reasoning framework that can be used by
nonexperts. A reasoning framework includes the mechanisms needed to use sound analytic theories to ana-
lyze the behavior of a system with respect to some quality attribute. This report defines the elements of a rea-
soning framework and illustrates the reasoning framework concept by describing several reasoning frame-
works and how they realize these elements.

14. SUBJECTTERMS 15. NUMBER OF PAGES

reasoning framework, quality attribute behavior, software architecture 40

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRACT

OF REPORT THIS PAGE ABSTRACT U L

Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

